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Problem 1

a)

As the equation for a one-dimensional linear regression is, y = w1+w2x we can
get the design matrix to be, 

1 x1

1 x2

...
...

1 xn


Then using the equation y⃗ = Xw⃗ we get the response vector to be,

y⃗ =


w1 + w2x1

w1 + w2x2

...
w1 + w2xn


And from there we can get the normal equations matrix using XT y⃗,[ ∑n

i=1 w1 + w2xi∑n
i=1 xi(w1 + w2xi)

]

b)

Let the linear form of the equation be H0 = ax+ b where a is the gradient and
b is the intercept and rewriting the normal equation we can get,

XTXw⃗ = XT y⃗[ ∑n
i=1 w1 + w2xi∑n

i=1 xi(w1 + w−2xi)

]
=

[ ∑n
i=1 yi∑n

i=1 yixi

]
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So we can take the first equation to get b

n∑
i=1

w1 + w2xi =

n∑
i=1

yi

n∑
i=1

w1 =

n∑
i=1

yi −
n∑

i=1

w2xi

Set
∑n

i=1 w1 = b,
∑n

i=1 yi = H0 and
∑n

i=1 w2xi = ax where w1 is the gradient
of the linear line,

b = H0 − ax

Taking the other equation,

n∑
i=1

xi(w1 + w2xi) =

n∑
i=1

yixi

n∑
i=1

w2x
2
i =

n∑
i=1

xi(yi − w1)

n∑
i=1

w2 =

∑n
i=1 yi −

∑n
i=1 w1∑n

i=1 xi

Now let
∑n

i=1 w2 = a,
∑n

i=1 yi = H0,
∑n

i=1 w1 = b and
∑n

i=1 xi = x then we
get,

a =
H0 − b

x
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Problem 2

a)

We get the design matrix to be, 
1 1 7
1 2 14
1 3 21
1 4 28


Therefore we can get the matrix of XTX,

XTX =

1 1 1 1
1 2 3 4
7 14 21 28



1 1 7
1 2 14
1 3 21
1 4 28

 =

 4 10 70
10 30 210
70 210 1470


Therefore we can get the rank of the matrix as using RREF we get,

RREF (XTX) =

4 10 70
0 5 35
0 0 0


As there are 2 pivots, we can see that the matrix has a rank of 2.

b)

We cannot calculate unique values of w⃗ in this case, as XTX is not full rank, it
can not be inverted therefore we cannot calculate w⃗ = (XTX)−1XT y⃗ as XTX
is non invertible as it isn’t full rank

c)

To solve the questions we are going to use the fact that ∥w⃗∥2 = w⃗ ·w⃗ = w⃗T w⃗ and
d
dw⃗ (v⃗ · w⃗) = v⃗ and finally the results we proved in homework 4 d

dw⃗ (w⃗TXTxw⃗) =
2XTXw⃗.

Rλ(w⃗) =
1

n
∥y⃗ −Xw⃗∥2 + λ∥w⃗∥2

=
1

n
(y⃗ −Xw⃗)T (y⃗ −Xw⃗) + λ(w⃗T w⃗)

=
1

n
(y⃗T y⃗ −XT y⃗ · w⃗ −XT y⃗ · w⃗ + w⃗TXTXw⃗) + λ(w⃗T w⃗)

=
1

n
(y⃗ · y⃗ − 2XT y⃗ · w⃗ + w⃗TXTXw⃗) + λ(w⃗ · w⃗)
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Now we can get the derivative of the equation to get the equation of the gradient
of the function,

d

dw⃗
Rλ =

d

dw⃗

1

n
(y⃗ · y⃗ − 2XT y⃗ · w⃗ + w⃗TXTXw⃗) +

d

dw⃗
λ(w⃗ · w⃗)

=
1

n
(
d

dw⃗
y⃗ · y⃗ − d

dw⃗
2XT y⃗ · w⃗ +

d

dw⃗
w⃗TXTXw⃗) +

d

dw⃗
λ(w⃗ · w⃗)

=
1

n
(−2XT y⃗ + 2XTXw⃗) + 2λw⃗

d)

To minimize the function we equate the derivative to 0 which gets us the normal
equation to be,

XTXw⃗ + nλw⃗ = XT y⃗

Next we notice that on the left hand side, that when the matrices are added,
the constant nλ are added on the diagonal of the square, symmetrical matrix
of XTX therefore we can get the equation to solve for a unique w⃗ as,

w⃗ = (XTX + nλI)−1XT y⃗

Where I is the identity of dimension of the square matrix ofXTX. And therefore
in order to solve this equation, the matrix of XTX + nλI has to be full rank in
order to be invertible, and as we add nλI we know that XTX + nλI is always
full rank and therefore always invertible. Hence, we can solve for a unique w⃗ in
the dataset given,

w⃗ = (XTX + 4λI)−1XT y⃗

=

4 + 4λ 10 70
10 30 + 4λ 210
70 210 1470 + 4λ

−1 1 1 1 1
1 2 3 4
7 14 21 28



10
20
30
40


=

1

2λ2 + 752λ+ 125

λ+375
2 − 5

4 − 35
4

− 5
4

4λ2+1474λ+245
8λ − 35(6λ+1)

8λ

− 35
4 − 35(6λ+1)

8λ
4λ234λ+5

8λ

 100
300
2100



=
1

2λ2 + 752λ+ 125

 50(λ+ 375)− 375− 18375

−125 + 300(4λ2+1474λ+245)
8λ − 73500(6λ+1)

8λ

−875− 10500(6λ+1)
8λ + 2100(4λ234λ+5)

8λ


Therefore in this case, as we know that XTX + nλI is invertible we can say
that for this dataset that there exist a unique w⃗ that is based of the value of
lambda.
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e)

As λ approaches 0, we only obtain a unique w⃗ if and only if the matrix of XTX
is full rank / invertible. As when λ approaches 0 we get,

lim
λ→0

(XTX + nλI)−1XT y⃗ = (XTX)−1XT y⃗

Which is the normal equation for Rsq. Therefore in the case of the given dataset,
relating back to part b, we know that we do not obtai a unique w⃗ in this case
as XTX is not full rank.
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Problem 3

a)

As there are 4 boxes of uniform probability, this means that the probability of
either one of the boxes having the jackpot is 1

4 chance. Therefore the box I
chose has a probability of 1

4 to be the jackpot. And the sample space of this
problem is given as,

S = {box1, box2, box3, box4}

Where each box has is assigned a probability of 1
4

b)

This is essentially the Monte Hall problem so to solve this using conditional
probability, we can calculate the probability that A = (Probability that the box
you chose has the Jackpot) and B = (Probability that there is nothing in the
magicians box) using that we calculate P (A|B),

P (A|B) =
P (A ∩B)

P (B)
=

1
4 × 1

3
1
3

=
1

4

This may seem counterintuitive, but essentially this proves that even if the
magicians opens and reveals an empty box, your probability of winning does
not change assuming you do not switch.

If you switch however, because the host says ”Here is your million dollar
chance.” and that the host being the host knows the position of the Jackpot.
And also the fact that you know one of the 3 other boxes is empty. This
makes the probability of either of the other 2 boxes containing the prize to be
1− P (A|B) = 3

4 therefore the probability of winning if you switch is equal to,

3
4
1
2

=
3

8

And 3
8 > 1

4 therefore you should switch everytime the host ask you, as based of
probability switching always gives you a better shot of winning.
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Problem 4

a)

Using the know rule for 2 events, we can break each of the 3 events into 2 events
and prove that they are all the same

P ((A ∩B) ∩ C) = P (A ∩B)× P (C|(A ∩B))

= P (A)× P (B|A)× P (C|A ∩B)

We can further proof that this is true by taking the bracket around B and
C and proving equality using the multiplication rule and that intersects are
commutative,

P (A ∩ (B ∩ C)) = P ((B ∩ C) ∩A)

= P (B ∩ C)× P (A|B ∩ C)

= P (B ∩ C)× P (A ∩B ∩ C)

P (B ∩ C)

= P (A ∩B ∩ C)

Therefore this shows equality proving the multiplication rule for 3 terms/events.

b)

Since we have that P (A∪B∪C) = P ((A∪B)∪C) and the distributive property
of sets where (A ∪B) ∩ C = (A ∩ C) ∪ (B ∪ C) and the given addition rule for
2 events, we can prove the addition rule for 3 events,

P ((A ∪B) ∪ C) = P (A ∪B) + P (C)− P ((A ∪B) ∩ C)

= P (A) + P (B)− P (A ∩B) + P (C)− P ((A ∩ C) ∪ (B ∩ C))

= P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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c)

Looking at the diagram if we want to get the union of everything, it is essentially
the same as trying to get the the entire area of the venn diagrams. But in the
case of adding the area of the 3 circles representing the venn diagram, we wil
have areas which overlap, areas which get added more than once. So in the
venn diagram above, the areas coloured blue are added once, the areas that are
green are added twice and the area that is red is added 3 times. We can get the
green area between A and B as,

P (A ∩B)− P (A ∩B ∩ C)

The green area between B and C as,

P (B ∩ C)− P (A ∩B ∩ C)

The green area between A and C as,

P (A ∩ C)− P (A ∩B ∩ C)

And finally the red area as,
P (A ∩B ∩ C)

As we want every single area to be added only once we get the equation,

P (A)+P (B)+P (C)− [P (A∩B)−P (A∩B ∩C)]− [P (B ∩C)−P (A∩B ∩C)]
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−[P (A ∩ C)− P (A ∩B ∩ C)]− 2P (A ∩B ∩ C)

Which yields us the 3 event general addition rule of

P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)
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Problem 5

a)

First we calculate the probability of getting the first King of Hearts from the
first deck, using combinatorics we get,

P (Probability of getting deck with KOHs) =
Sets with KOHs

Total number of sets
=

C

(
51
12

)
C

(
52
13

)
Calculating the combinatorics we get,

C

(
51
12

)
C

(
52
13

) =

51!
12!(51−12)!

52!
13!(52−13)!

=
1

4

Next, to get the probability of getting the second King of hearts as well, we can
square the answer to get the probability which is,

(
1

4
)2 =

1

16

Therefore the probability of getting a pair of King of Hearts is 1
16 .

b)

Using the compliment of you getting A specific card, the probability of either
one of the other players receiving the first Aces of Hearts is 1− 1

4 = 3
4 . Then the

probability for the same person getting the second Ace of Hearts is 1
4 Therefore

the probability of any other player getting a pair of Ace of Hearts is,

3

4
× 1

4
=

3

16

c)

To calculate the probability of getting no pairs, first we notice that the first
distribution of the first deck does not matter as all the cards will be different
regardless. Then for the second deck, we just have to pick the cards 13 times
and not get the same card that you already have in your hand which equates
to,

P (c) = 1× 39

52
× 38

51
× ...× 27

39

Which equals to 0.00032797302
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d)

Let A = (Probability that you get the pair of KOHS) and B = (Probability some
other player gets AOHS) then the probability we want to calculate is P (B|A)
therefore,

P (B|A) =
P (B ∩A)

P (A)
=

1
16 × 3

16
1
16

=
3

16

e)

Let A = (The probability that you get a pair of King of Hearts and no Aces of
Hearts) and B = (The probability that any of the other players get the pair of
Ace of Hearts). Therefore we want to find the probability of P (B|A),

P (B|A) =
P (B ∩A)

P (A)
=

1
16 × 3

16
1
16 × 9

16

=
1

3

The P(A) is found by mutliplying the probability that you get the pair of King
of Hearts 1

4 times the probability you don’t get any aces which is 9
16 . As for the

probability of you getting the pair of Kings and any other player getting the
pair of aces is, 1

16 × 3
16

f)

Here we can use combinatorics in a similar fashion to when I used it in part a,

Sets with KOHS

Total number of sets
=

C

(
102
24

)
C

(
104
26

) =
25

412

g)

You are more likely to get a pair of King of Hearts when the cards are distributed
separately as compared to when they are together. My intuitive explaination
for this is that in the case where they are distributed separately, you are looking
for the probability that in 13 cards for one of them to be the King of Hearts
and for that to happen twice while when they are together, you are looking for
2 cards in 26 cards instead. This intuitive makes the first method more likely
than the second as in the first method, you are looking for 1 card in 13 draws
from a deck of 52 cards which is very likely, and to have this decently likely
event to happen twice. While in the second method, you are looking for 2 cards
to appear in 26 draws in a deck of 104 cards, which is a lot less likely as for one,
you are looking for the same card to appear twice, in the 26 cards draw and
secondly you are drawing from a much larger deck.
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